New Approaches and Approved Drugs in Spinal Muscular Atrophy (SMA) Treatment
PDF
Cite
Share
Request
Review
P: 248-258
August 2021

New Approaches and Approved Drugs in Spinal Muscular Atrophy (SMA) Treatment

J Curr Pediatr 2021;19(2):248-258
1. Gaziantep Üniversitesi Tıp Fakültesi, Tıbbi Farmakoloji Anabilim Dalı, Gaziantep, Türkiye
No information available.
No information available
Received Date: 17.02.2021
Accepted Date: 05.07.2021
Publish Date: 25.08.2021
PDF
Cite
Share
Request

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease lead to by deletions or mutations in the survival motor neuron (SMN1) gene. SMA is the most common inherited cause of childhood mortality. SMN1 exists as a single copy in the genome of all eukaryotic organisms. Genomic duplication causes a second gene, SMN2 in humans. Approximately 95% of SMA patient has homozygous deletions in exon 7 of SMN1. Thus, SMN protein can’t be produced sufficiently. SMN2 produces a small amount functional SMN protein due to substitution (C-T) in exon 7. SMA is classfied into five types (0-IV) based on age of onset, severity of motor decline and life expectancy. Type I (Werding-Hoffmann) is the most severe and primarily affects infants. Phenotypic variability in SMA patients is also associated with the copy number of the SMN2 gene. The copy number of SMN2 correlates with the severity of the disease. The SMN protein has a key regulator roles such as mRNA transport, RNA metabolism in neuronal cells. Currently, the main target for SMA treatment is to increase SMN protein level in motor neuron cells with small molecules, oligonucleotides, and gene replacement. Stem cell studies are performed as well for SMA treatment. FDA has approved three drugs in the SMA treatment since 2016. These drugs are nusinersen (oligonucleotide), onasemnogene abeparvovec-xioi (gene therapy), and risdiplam (SMN2 gene modifier). Early diagnosis has important role in drugs efficacy. Motor neuron dysfunctions may be reversible when SMN-dependent therapeutic approaches can be applied presymptomatically.

References

1Arnold ES, Fischbeck KH. Spinal muscular atrophy. Handb Clin Neurol 2018;148:591-601.
2Pearn J. Classification of spinal muscular atrophies. Lancet 1980;1:919-22.
3McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 1997;60:1411-22.
4Hendrickson BC, Donohoe C, Akmaev VR, Sugarman EA, Labrousse P, Boguslavskiy L, et al. Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet 2009;46:641-4.
5https://smabenimleyuru.org.tr/sma-nedir/ Erişim tarihi:14.02.2021.
6Munsat TL, Davies KE. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul Disord 1992;2:423-8.
7Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K; UK SMA Research Consortium. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 2017;10:943-54.
8Farrar MA, Kiernan MC. The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics 2015;12:290-302.
9Mercuri E, Pera MC, Scoto M, Finkel R, Muntoni F. Spinal muscular atrophy - insights and challenges in the treatment era. Nat Rev Neurol 2020;16:706-15.
10Melki J, Sheth P, Abdelhak S, Burlet P, Bachelot MF, Lathrop MG, et al. Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12-q14. The French Spinal Muscular Atrophy Investigators. Lancet 1990;336:271-3.
11Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80:155-65.
12Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 2017;24:520-6.
13Arnold WD, Kassar D, Kissel JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve 2015;51:157-67.
14Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin 2015;33:831-46.
15Gennarelli M, Lucarelli M, Capon F, Pizzuti A, Merlini L, Angelini C, et al. Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun 1995;213:342-8.
16Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 1997;16:265-9.
17Prior TW, Swoboda KJ, Scott HD, Hejmanowski AQ. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am J Med Genet A 2004;130:307-10.
18Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 1997;6:1205-14.
19Ar Rochmah M, Awano H, Awaya T, Harahap NIF, Morisada N, Bouike Y, et al. Spinal muscular atrophy carriers with two SMN1 copies. Brain Dev 2017;39:851-60.
20Darbar IA, Plaggert PG, Resende MB, Zanoteli E, Reed UC. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid. BMC Neurol 2011;11:36.
21Kissel JT, Scott CB, Reyna SP, Crawford TO, Simard LR, Krosschell KJ, et al. Project Cure Spinal Muscular Atrophy Investigators’ Network. SMA CARNIVAL TRIAL PART II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy. PLoS One 2011;6:21296.
22Swoboda KJ, Scott CB, Crawford TO, Simard LR, Reyna SP, Krosschell KJ, et al. Project Cure Spinal Muscular Atrophy Investigators Network. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS One 2010;5:12140.
23Kwon DY, Motley WW, Fischbeck KH, Burnett BG. Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice. Hum Mol Genet 2011;20:3667-77.
24Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 2007;5:73.
25Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 2011;3:72ra18.
26Williams JH, Schray RC, Patterson CA, Ayitey SO, Tallent MK, Lutz GJ. Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy. J Neurosci 2009;29:7633-8.
27Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016;388:3017-26.
28Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017;377:1723-32.
29Hoy SM. Nusinersen: First Global Approval. Drugs 2017;77:473-9.
30Garbes L, Riessland M, Hölker I, Heller R, Hauke J, Tränkle C, et al. LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate. Hum Mol Genet 2009;18:3645-58.
31Van Meerbeke JP, Gibbs RM, Plasterer HL, Miao W, Feng Z, Lin MY, et al. The DcpS inhibitor RG3039 improves motor function in SMA mice. Hum Mol Genet 2013;22:4074-83.
32Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z, et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 2014;345:688-93.
33Mattis VB, Rai R, Wang J, Chang CW, Coady T, Lorson CL. Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts. Hum Genet 2006;120:589-601.
34Mattis VB, Tom Chang CW, Lorson CL. Analysis of a read-through promoting compound in a severe mouse model of spinal muscular atrophy. Neurosci Lett 2012;525:72-5.
35Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999;104:375-81.
36Bordet T, Berna P, Abitbol JL, Pruss RM. Olesoxime (TRO19622): a novel mitochondrial-targeted neuroprotective compound. Pharmaceuticals (Basel) 2010;3:345-68.
37Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C, et al. Olesoxime SMA Phase 2 Study Investigators. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017;16:513-22.
38Bowerman M, Beauvais A, Anderson CL, Kothary R. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum Mol Genet 2010;19:1468-78.
39Bowerman M, Shafey D, Kothary R. Smn depletion alters profilin II expression and leads to upregulation of the RhoA/ROCK pathway and defects in neuronal integrity. J Mol Neurosci 2007;32:120-31.
40Hensel N, Claus P. The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist 2018;24:54-72.
41Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009;27:59-65.
42Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 2010;28:271-4.
43Ozdinler PH, Macklis JD. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 2006;9:1371-81.
44Tsai LK, Chen CL, Ting CH, Lin-Chao S, Hwu WL, Dodge JC. et al. Systemic administration of a recombinant AAV1 vector encoding IGF-1 improves disease manifestations in SMA mice. Mol Ther 2014;22:1450-9.
45Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D. et al. Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 2008;118:3316-30.
46Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D. et al. Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. Brain 2010;133:465-81.
47Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013;45:e54.
48Paradisi M, Alviano F, Pirondi S, Lanzoni G, Fernandez M, Lizzo G, et al. Human mesenchymal stem cells produce bioactive neurotrophic factors: source, individual variability and differentiation issues. Int J Immunopathol Pharmacol 2014;27:391-402.
49Villanova M, Bach JR. Allogeneic mesenchymal stem cell therapy outcomes for three patients with spinal muscular atrophy type 1. Am J Phys Med Rehabil 2015;94:410-5.
50Ross LF, Kwon JM. Spinal Muscular Atrophy: Past, Present, and Future. Neoreviews 2019;20:437-51.
51https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209531lbl.pdf Erişim tarihi: 02.02.2021.
52Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM. et al. Group CS. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N Engl J Med 2018;378:625-35.
53De Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019;29:842-56.
54Wirth B. Spinal Muscular Atrophy: In the Challenge Lies a Solution. Trends Neurosci 2021;44:306-22.
55https://www.resmigazete.gov.tr/eskiler/2019/02/20190201-8.pdf Erişim tarihi: 16.02.2021.
56Dabbous O, Maru B, Jansen JP, Lorenzi M, Cloutier M, Guérin A. et al. Survival, motor function, and motor milestones: comparison of avxs-101 relative to nusinersen for the treatment of infants with Spinal Muscular Atrophy type 1. Adv Ther 2019;36:1164-76.
57Hoy SM. Onasemnogene Abeparvovec: First Global Approval. Drugs 2019;79:1255-62.
58https://www.fda.gov/media/126109/download Erişim tarihi: 02.02.2021.
59Dhillon S. Risdiplam: First Approval. Drugs 2020;80:1853-8.
60https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213535s000lbl.pdf Erişim tarihi:02.02.2021.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House