Precision Medicine Concept and its Role in the Treatment of Immunological Diseases
PDF
Cite
Share
Request
Review
P: 259-270
August 2021

Precision Medicine Concept and its Role in the Treatment of Immunological Diseases

J Curr Pediatr 2021;19(2):259-270
1. Sağlık Bilimleri Üniversitesi, Dr. Sami Ulus Kadın Doğum ve Çocuk Sağlığı Hastalıkları Eğitim ve Araştırma Hastanesi, Çocuk Alerji İmmünoloji Kliniği, Ankara, Türkiye
No information available.
No information available
Received Date: 01.10.2020
Accepted Date: 09.05.2021
Publish Date: 25.08.2021
PDF
Cite
Share
Request

ABSTRACT

In the conventional medical understanding, the focus has been on diseases, the same treatment methods have been applied to different individuals with the same disease, but the fact that the same disease will not be the same in different people and therefore the treatment cannot be the same has emerged. For this reason, individuals are more prominent than disease, and in this context, precision medicine concept has entered our lives with the developing technological infrastructure. Although the term precision medicine is relatively new, the concept has been a part of healthcare for many years. In the treatment of immunological diseases, sensitive medicine treatment strategies basically include three different treatment approaches. Replacement of “missing molecules”, inhibition of overactive intracellular signaling and cytokine blockade. Along with the treatment approaches which have been most frequently used in immunology clinics for many years such as IVIG, PEG-ADA and IFN-y, precision medicine also includes relatively rarer treatments that have been discovered lately such as pleriksafor, sirolimus and vedolizumab. Defining new molecular pathways with today’s increasing technological infrastructure will undoubtedly bring the days when the concept of precision medicine will be used more effectively in the treatment of many diseases.

References

1https://tr.wikipedia.org/wiki/T%C4%B1p_tarihi#cite_note-1 (erişim tarihi 05.09.2020).
2Tekpınar L, Erdem R. Kişiselleştirilmiş Tip Ve Genom Araştirmalarinin Sağlik Çiktilari Bağlaminda Değerlendirilmesi. Hacettepe Sağlık İdaresi Dergisi 2019;22;4:843-62.
3http://archive.boston.com/news/globe/editorial_opinion/oped/articles/2005/07/17/personalized_medicine/ (erişim tarihi 05.09.2020)
4http://www.personalizedmedicinecoalition.org/ (erişim tarihi 05.09.2020).
5Kleinke J, Christensen CM, Grossman JH, Hwang J. The Innovator’s Prescription: A Disruptive Solution for Health Care. Project Hope 7500 Old Georgetown RD, STE 600, Bethesda, MD 20814-6133 USA;2009.
6https://ipm.pitt.edu/(erişim tarihi 05.09.2020).
7https://blogs.cdc.gov/genomics/2016/04/21/shift/.(erişim tarihi 05.09.2020).
8Naylor S. What’s in a Name? The Evolution of ‘P-Medicine. The Journal of Precision Medicine 2015;2:15-29.
9Kasztura M, Richard A, Bempong N-E, Loncar D, Flahault A. Cost-effectiveness of precision medicine: a scoping review. Int J Public Health 2019;15:1261-71.
10https://www.nih.gov/sites/default/files/research-training/initiatives/pmi/pmi-working-group-report-20150917-2.pdf (erişim tarihi 05.09.2020).
11https://obamawhitehouse.archives.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative. (erişim tarihi 05.09.2020)
12http://www.cleanroomnews.org/dunya-genelinde-hassas-tip-pazar-buyuklugu-ve-gelecek-ongoruleri?page=1 (erişim tarihi 05.09.2020).
13http://www.thd.org.tr/thdData/userfiles/file/HEM_DES_2007_1.pdf ((erişim tarihi 05.09.2020)
14Camcıoğlu Y. İmmünoglobulin Tedavisi. Çocuk Enf Derg 2009;3:69-74.
15Booth C, Gaspar HB. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics 2009;3:349-358.
16Bülent Şekerel. Çocukluk Çağında Astım, Alerji ve İmmünoloji, Ada Basımevi, 2015
17Hoyos-Bachiloglu R, Platt C. Precision Medicine as Treatment for Primary Immunodeficiency and Immune Dysregulation. Immunology and Genetics Journal 2019;2:153-72.
18Gülbezer EE, Keser G. Biyolojik tedaviler. Ulus Romatol Derg 2017;9:11-31
19Chellapandian D, Chitty-Lopez M, Leiding JW. Precision Therapy for the Treatment of Primary Immunodysregulatory Diseases. Immunol Allergy Clin North Am 2020;40:511-26.
20Lee S, Moon JS, Lee C-R, Kim H-E, Baek S-M, Hwang S, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol 2016;137:327-30.
21Van Leeuwen EM, Cuadrado E, Gerrits AM, Witteveen E, de Bree GJ. Treatment of intracerebral lesions with abatacept in a CTLA4-haploinsufficient patient. J Clin Immunol 2018;38:464-7.
22Küçüköner M. Kanser tedavisinde mTOR sinyal yolağı ve mTOR inhibitörleri. Dicle Tıp Dergisi 2013;40:156-60.
23https://www.takeda.com/4a4276/siteassets/tr-tr/home/what-we-do/urun-listesi/kullanma-talimatlar/entyvio-kt-03.12.2019.pdf (erişim tarihi 03.09.2020).
24Navarini AA, Hruz P, Berger CT, Hou TZ, Schwab C, Gabrysch A, et al. Vedolizumab as a successful treatment of CTLA-4-associated autoimmune enterocolitis. J Allergy Clin Immunol 2017;139:1043-6.
25Bal SK, İkincioğulları A. Dönüşümsel tıp ve primer immün yetmezlikler. Turkiye Klinikleri J Immun Allergy-Special Topics 2017;10:35-9.
26Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol Pract 2019;7:2790-800
27http://www.solunum.org.tr/solunum2011/poster/html/EP-139.pdf (erişim tarihi 03.09.2020).
28Nacaroğlu HT, Bahçeci Erdem S, Gülez N, Ünsal Karkiner CS, Devrim i, Genel F, et al. İmmünyetmezligin arkasına gizlenen tüberküloz; kronik granülomatöz hastalık tanısı alan iki olgunun irdelenmesi. Tuberk Toraks 2017;65:56-59.
29Filiz S, Kocacık Uygun D, Yeğin O. Kronik granülomatöz hastalık. Turk J Immunol 2013;1:22-31.
30Marciano BE, Wesley R, De Carlo ES, Anderson VL, Barnhart LA, Darnell D, et al. Long-term interferon-γ therapy for patients with chronic granulomatous disease. Clin Infect Dis 2004;39:692-9.
31Filiz S, Kocacik DFU, Özden S, Camcioğlu Y, Somer A, Barlan I. Ülkemizde kronik granülomatöz hastalık tanılı olguların demografik verileri ve interferon-gama tedavisi öncesi ve sonrası klinik verilerinin karşılaştırılması. 2013;22:27-44. https://acikerisim.erbakan.edu.tr/xmlui/handle/20.500.12452/2402
32Tan ÇS, Ayvaz DÇ, Tezcan İ, Sanal Ö. Akım Sitometri ile IL-12Rß1 Ekspresyon Analizinin IL-12Rß1 Eksikliğinin Tanısındaki Rolü. Hacettepe Üniversitesi, Sağlık Bilimleri Enstitüsü, İmmünoloji Doktora Programı, (Doktora Tezi) Ankara; 2013.
33https://www.slideshare.net/BardiaFarivar/jak-stat-sinyal-yola (erişim tarihi:01.09.2020)
34Forbes LR, Vogel TP, Cooper MA, Castro-Wagner J, Schussler E, Weinacht KG, et al. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J Allergy Clin Immunol 2018;142:1665-9.
35Meesilpavikkai K, Dik WA, Schrijver B, Nagtzaam NM, Posthumus-van Sluijs SJ, van Hagen PM, et al. Baricitinib treatment in a patient with a gain-of-function mutation in signal transducer and activator of transcription 1 (STAT1). J Allergy Clin Immunol 2018;142:328-30.
36Vargas-Hernández A, Mace EM, Zimmerman O, Zerbe CS, Freeman AF, Rosenzweig S, et al. Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2018;141:2142-55.
37Weinacht KG, Charbonnier LM, Alroqi F, Plant A, Qiao Q, Wu H, et al. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol 2017;139:1629-40.
38Palmer DC, Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 2009;30:592-602.
39Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A, Niemela JE, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 2015;125:591-9.
40http://kaplanlab.com/nht/apds-pasli-hastaligi/(erişim tarihi 04.09.2020).
41Özgen Z, Seçkin D. Dermatolojik hastalıkların tedavisinde immunmodülasyon. Turkderm-Archives of the Turkish Dermatology and Venerology 2013;47(Suppl 1):46-51.
42Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI (3) K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 2014;15:88-97.
43Maccari ME, Abolhassani H, Aghamohammadi A, Aiuti A, Aleinikova O, Bangs C, et al. Disease evolution and response to rapamycin in activated phosphoinositide 3-kinase δ syndrome: the european society for immunodeficiencies-activated phosphoinositide 3-kinase δ syndrome registry. Front Immunol 2018;9:543.
44No authors listed. Plerixafor: AMD 3100, AMD3100, JM 3100, SDZ SID 791. Drugs R D 2007;8:113-9.
45https://en.wikipedia.org/wiki/Plerixafor (erişim tarihi: 03.09.2020)
46McDermott DH, Liu Q, Ulrick J, Kwatemaa N, Anaya-O’Brien S, Penzak SR, et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood 2011;118:4957-62.
47McDermott DH, Pastrana DV, Calvo KR, Pittaluga S, Velez D, Cho E, et al. Plerixafor for the treatment of WHIM syndrome. N Engl J Med 2019;380:163-70.
48Aksentijevich I, Moura NS, Barron K. Adenosine Deaminase 2 Deficiency. GeneReviews: University of Washington, Seattle; 2019.
49Aydın V, Akıcı A. Romatolojik hastalıklarda TNF-alfa inhibitörü kullanımına bağlı enfeksiyonlar. Jour Turk Fam Phy 2018;9:13-24.
50Caorsi R, Penco F, Grossi A, Insalaco A, Omenetti A, Alessio M, et al. ADA2 deficiency (DADA2) as an unrecognised cause of early onset polyarteritis nodosa and stroke: a multicentre national study. Ann Rheum Dis 2017;76:1648-56.
51Ombrello AK, Qin J, Hoffmann PM, Kumar P, Stone D, Jones A, et al. Treatment strategies for deficiency of adenosine deaminase 2. N Engl J Med 2019;380:1582-84.
52https://www.printo.it/pediatric-rheumatology/TR/info/pdf/17/1/Kriyopirin-%C4%B0li%C5%9Fkili-Periyodik-Sendrom-(CAPS) (erişim tarihi 04.09.2020).
53Yıldız M, Adroviç A, Kasapçopur Ö. Kriyopirin ilişkili periyodik sendrom. İçinde: Ünsal Ş, Makay B, editörler. Otoinflamatuvar Hastalıklar. 1. Baskı. Ankara: Türkiye Klinikleri; 2020. s. 37- 42.
54http://ichastaliklariromatoloji.medicine.ankara.edu.tr/wp-content/uploads/sites/680/2014/02/Biyolojik-Ajanlar.pdf. (erişim tarihi 04.09.2020).
55Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ, Kavanaugh A, et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum 2008;58:2443-52.
56Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 2009;360:2416-25.
57Haskoloğlu ZŞ, Bal SK, İslamoğlu C, Baskin AK, Çelik DB, Aytekin C, ve ark. Lökosit Adezyon Defekti (Tip I ve Tip III) Tanısıyla İzlenen 14 Hastanın Klinik, İmmünolojik Özellikleri ve Tedavi Sonuçlarının Değerlendirilmesi. Türkiye Çocuk Hastalıkları Dergisi 2020;14:286-94.
58Moutsopoulos NM, Zerbe CS, Wild T, Dutzan N, Brenchley L, DiPasquale G, et al. Interleukin-12 and interleukin-23 blockade in leukocyte adhesion deficiency type 1. N Engl J Med 2017;376:1141-6.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House